Text
Pemodelan Return Saham Perbankan Menggunakan Model Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH) 519.536 WIB p
ABSTRAK
Model ARIMA adalah salah satu pemodelan yang dapat diterapkan pada data
runtun waktu. Dalam pemodelan ARIMA terdapat asumsi bahwa varian
residualnya konstan. Data runtun waktu finansial khususnya return harga saham
memiliki kecenderungan berubah secara cepat dari waktu ke waktu dan bersifat
fluktuatif sehingga varian residualnya tidak konstan atau terjadi heteroskedastisitas.
Untuk mengatasi masalah tersebut dapat digunakan model Autoregressive
Conditional Heteroscedasticity (ARCH) atau Generalized Autoregressive
Conditional Heteroscedasticity (GARCH). Selain memiliki varian yang tidak
konstan, data finansial umumnya terdapat perbedaan pengaruh antara nilai residual
positif dan residual negatif terhadap volatilitas data yang disebut efek asimetris.
Oleh karena itu, pada penelitian ini digunakan salah satu model GARCH asimetris
yaitu Exponential Generalized Autoregressive Conditional Heteroscedasticity
(EGARCH) untuk mengatasi masalah heteroskedastisitas dan efek asimetris pada
data return harga penutupan saham harian Perbankan. Data pada penelitian ini
adalah data return harga penutupan saham harian Perbankan periode 31 Oktober
2013 sampai 24 Agustus 2016. Hasil dari analisis ini diperoleh beberapa model
EGARCH. Model ARIMA([2,4],0,[2,4])-EGARCH(1,1) merupakan model terbaik
karena memiliki nilai AIC terkecil dibandingkan model lainnya.
Kata kunci: Return, Heteroskedastisitas, Efek asimetris, ARCH/GARCH,
EGARCH.
ABSTRACT
ARIMA model is basically one of the models that can be applied in the time series data. In
this ARIMA model, there is an assumption that the error variance of this model is constant. The
price of stocks of the time series financial data, especially return has the trend to change quickly
from time to time and it is actually fluctuative, so its error variance is inconstant or in another
word, it calls as heteroscedasticity. To overcome this problem, it can be used the model of
Autoregressive Conditional Heteroscedasticity (ARCH) or Generalized Autoregressive
Conditional Heteroscedasticiy (GARCH). Furthermore, the financial data commonly has the
different effect between the value of positive error and negative error toward the volatility data
that is known as asymmetric effect. Indeed, one of the models used in this research, to overcome
the problem of either heteroscedasticity or asymmetric effect toward the return of the close-stocks
price of Banking daily is GARCH of asymmetric model that is Exponential Generalized
Autoregressive Conditional Heteroscedasticity (EGARCH). The data of this research is the return
data of the close-stocks price of Banking in October 31st 2013 to August 24th 2016. From the result
of this analysis, it is gained several models of EGARCH. ARIMA model ([2,4],0,[2,4])-EGARCH
(1,1) is such a best model for it has the lowest AIC value than any other models.
Keywords: Return, Heteroscedasticity, Asymmetric effect, ARCH/GARCH, EGARCH
531E17I | 531 E 17 | Perpustakaan FSM Undip (Referensi) | Tersedia |
Tidak tersedia versi lain