Text
Perbandingan Metode K-Nearest Neighbor dan Adaptive Boosting pada Kasus Klasifikasi Multi Kelas
ABSTRAK
Kesehatan keuangan perusahaan memberikan suatu indikasi kinerja perusahaan yang berguna untuk mengetahui posisi perusahaan dalam area industri. Kinerja perusahaan perlu diprediksi untuk mengetahui perkembangan perusahaan. K- Nearest Neighbor (KNN) dan Adaptive Boosting (AdaBoost) merupakan metode klasifikasi yang dapat digunakan untuk memprediksi kinerja perusahaan. KNN mengklasifikasikan data berdasarkan kedekatan jarak data sedangkan AdaBoost bekerja dengan konsep memberi bobot lebih pada amatan yang termasuk weak learner. Tujuan dari penelitian ini adalah membandingkan metode KNN dan AdaBoost untuk mengetahui metode yang lebih baik dalam memprediksi kinerja perusahaan di Indonesia. Variabel dependen yang digunakan dalam penelitian ini adalah kinerja perusahaan yang digolongkan ke dalam empat kelas yaitu tidak sehat, kurang sehat, sehat, dan sehat sekali. Variabel independen yang digunakan terdiri atas tujuh rasio keuangan yaitu ROA, ROE, WCTA, TATO, DER, LDAR, dan ROI. Data yang digunakan yaitu data rasio keuangan dari 575 perusahaan yang tercatat di Bursa Efek Indonesia tahun 2019. Hasil penelitian ini menunjukkan bahwa prediksi kinerja perusahaan di Indonesia sebaiknya menggunakan metode AdaBoost karena memiliki akurasi klasifikasi sebesar 0,84522 yang lebih besar dibandingkan akurasi metode KNN sebesar 0,82087.
Kata Kunci : kinerja perusahaan, klasifikasi, akurasi klasifikasi.
ABSTRACT
The company's financial health provides an indication of company’s performance that is useful for knowing the company's position in industrial area. The company's performance needs to be predicted to know the company's progress. K-Nearest Neighbor (KNN) and Adaptive Boosting (AdaBoost) are classification methods that can be used to predict company's performance. KNN classifies data based on the proximity of the data distance while the AdaBoost works with the concept of giving more weight to observations that include weak learners. The purpose of this study is comparing the KNN and AdaBoost methods to find out better methods for predicting company’s performance in Indonesia. The dependent variable used in this study is the company's performance which is classified into four classes, namely unhealthy, less healthy, healthy, and very healthy. The independent variables used consist of seven financial ratios namely ROA, ROE, WCTA, TATO, DER, LDAR, and ROI. The data used are financial ratio data from 575 companies listed on the Indonesia Stock Exchange in 2019. The results of this study indicate that the prediction of company’s performance in Indonesia should use the AdaBoost method because it has a classification accuracy of 0,84522 which is greater than the KNN method’s accuracy of 0,82087.
Keywords: company’s performance, classification, classification accuracy.
793E20III | 793 E 20iii | Perpustakaan FSM Undip (Referensi) | Tersedia |
Tidak tersedia versi lain